Identifiers and Description

Gene Model Identifier

TTHERM_01161040

Standard Name

TWI1 (Tetrahymena piWI )

Aliases

PreTt26358 | 259.m00042 | cnjA | 3823.m01243

Description

PAZ/Piwi Domain protein similar to Piwi/Argonaute; required for accumulation of scnRNAs, elimination of IES and chromosome breakage during macronuclear development; interacts with scnRNAs; involved in histone H3 lysine 9/27 methylations

Genome Browser (Macronucleus)

GBrowse

Genome Browser (Micronucleus)

GBrowse

Gene Ontology Annotations

Cellular Component

Molecular Function

Biological Process

Domains

No Data fetched for Domains

Gene Expression Profile

  • Tetrahymena Functional Genomics Database:

Change in Gene Expression

TMHMM

TMHMM

Signal Peptide

Signal Peptide Present?: No
Presense Probability: 12%

TetraMine Data

TTHERM_01161040

WebApollo

Fullscreen View

Tetrahymena Stock Center

No Data fetched for StockID

Homologs (v.2006 protein sequences)

SourceIdentifierScoreDescription
Tetrahymena borealisEI9_10638.19.997093137033517e-262piwi domain-containing protein
(781 aa)
OxytrichaContig13836.0.g221.99904246446894e-143Piwi domain
WormBaseWBGene000041787.997650503635949e-84locus:prg-1 status:Confirmed
UniProt:P90786 protein_id
:CAA98113.1
DictyBaseDDB_G02903774.001968334034435e-68agnB on chromosome: 5 position
4008116 to 4011078
Stentor CoeruleusSteCoe_6877.175095973164411e-66

General Information

Paragraph NoGene NameParagraph Text
2TWI1,
HHT2,
PDD1,
PDD3,
DCL1
A proposed model for the mechanism of programmed DNA elimination in Tetrahymena is based on the timing of expression, cellular distribution, mutant phenotypes, and predicted functions of the protein and RNA components involved. In this model, both strands of the micronuclear genome (or perhaps only the portions containing internal eliminated sequences) are transcribed early in conjugation to produce large non-genic, double-stranded RNAs. This transcription is likely performed by RNA Polymerase II, based on the localization of its subunit Rpb3p to the micronucleus during this time. These transcripts pass to the cytoplasm where they are processed into short (~28 nucleotide) scan RNAs (scnRNA) by the dicer-like protein Dcl1p, similar to the production of the small inhibitory RNAs (siRNA) central to the RNA interference (RNAi) pathway of other eukaryotes. The scnRNAs complex with Twi1p, a member of the PPD (PAZ and Piwi Domain) protein family, whose members are commonly involved in RNAi and related processes. The scnRNA/Twi1p complexes enter the old macronucleus, where scnRNAs homologous to DNA sequences found there are degraded. The remaining scnRNAs, comprised of micronuclear-restricted sequences, are transferred to the developing macronucleus. There, histone H3 proteins (Hht1p, Hht2p) that are bound to sections of the genome sharing identity to the scnRNAs are methylated on lysine-9. This modification, which is often associated with the formation of heterochromatin, is recognized by one or more of the chromodomains belonging to Pdd1p and Pdd3p. Regions of DNA associated with these modified histones are eliminated from the developing macronuclear genome.
104GIW1,
TWI1
Giw1p binds to Twi1p complexed with single-stranded, but not double-stranded, scnRNAs and that this interaction selectively promotes the MAC localization of the mature Twi1p-scnRNA complex (Noto et al. 2010).
109HEN1,
TWI1
Twi1p-associated scnRNAs are 2'-O-methylated at their 3' ends by the RNA methyltransferase Hen1p (Kurth & Mochizuki 2009).
105GIW1,
COI12,
TWI1
ATP-dependent and ATP-independent activities of Coi12p facilitate scnRNA loading by counteracting the Twi1p-binding protein Giw1p, which is important for sorting scnRNAs to Twi1p (Woehrer et al. 2015).
108TWI1,
TWI11
Maternally-expressed Twi1p is loaded with Early-scnRNAs expressed from the MIC at early conjugation stages while zygotically-expressed Twi1p and Twi11p are loaded with Late-scnRNAs expressed from the new MAC at late conjugation stages (Noto et al. 2015).

Associated Literature

  1. Ref:27892853: Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, Hadjithomas M, Krishnakumar V, Badger JH, Caler EV, Russ C, Zeng Q, Fan L, Levin JZ, Shea T, Young SK, Hegarty R, Daza R, Gujja S, Wortman JR, Birren BW, Nusbaum C, Thomas J, Carey CM, Pritham EJ, Feschotte C, Noto T, Mochizuki K, Papazyan R, Taverna SD, Dear PH, Cassidy-Hanley DM, Xiong J, Miao W, Orias E, Coyne RS (2016) Structure of the germline genome of Tetrahymena thermophila and relationship to the massivel
  2. Ref:25788697: Iwamoto M, Koujin T, Osakada H, Mori C, Kojidani T, Matsuda A, Asakawa H, Hiraoka Y, Haraguchi T (2015) Biased assembly of the nuclear pore complex is required for somatic and germline nuclear differentiation in Tetrahymena. Journal of cell science 128(9):1812-23
  3. Ref:25588944: Woehrer SL, Aronica L, Suhren JH, Busch CJ, Noto T, Mochizuki K (2015) A Tetrahymena Hsp90 co-chaperone promotes siRNA loading by ATP-dependent and ATP-independent mechanisms. The EMBO journal 34(4):559-77
  4. Ref:26095658: Noto T, Kataoka K, Suhren JH, Hayashi A, Woolcock KJ, Gorovsky MA, Mochizuki K (2015) Small-RNA-Mediated Genome-wide trans-Recognition Network in Tetrahymena DNA Elimination. Molecular cell 59(2):229-42
  5. Ref:24178568: Noto T, Kurth HM, Mochizuki K (2014) Analysis of Piwi-loaded small RNAs in Tetrahymena. Methods in molecular biology (Clifton, N.J.) 1093( ):209-24
  6. Ref:23770361: Mochizuki K, Kurth HM (2013) Loading and pre-loading processes generate a distinct siRNA population in Tetrahymena. Biochemical and biophysical research communications 436(3):497-502
  7. Ref:22855833: Schoeberl UE, Kurth HM, Noto T, Mochizuki K (2012) Biased transcription and selective degradation of small RNAs shape the pattern of DNA elimination in Tetrahymena. Genes & development 26(15):1729-42
  8. Ref:21914793: Schoeberl UE, Mochizuki K (2011) Keeping the soma free of transposons: programmed DNA elimination in ciliates. The Journal of biological chemistry 286(43):37045-52
  9. Ref:20211138: Noto T, Kurth HM, Kataoka K, Aronica L, DeSouza LV, Siu KW, Pearlman RE, Gorovsky MA, Mochizuki K (2010) The Tetrahymena argonaute-binding protein Giw1p directs a mature argonaute-siRNA complex to the nucleus. Cell 140(5):692-703
  10. Ref:19596782: Bednenko J, Noto T, DeSouza LV, Siu KW, Pearlman RE, Mochizuki K, Gorovsky MA (2009) Two GW repeat proteins interact with Tetrahymena thermophila argonaute and promote genome rearrangement. Molecular and cellular biology 29(18):5020-30
  11. Ref:19240163: Kurth HM, Mochizuki K (2009) 2'-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena. RNA (New York, N.Y.) 15(4):675-85
  12. Ref:18708581: Aronica L, Bednenko J, Noto T, DeSouza LV, Siu KW, Loidl J, Pearlman RE, Gorovsky MA, Mochizuki K (2008) Study of an RNA helicase implicates small RNA-noncoding RNA interactions in programmed DNA elimination in Tetrahymena. Genes & development 22(16):2228-41
  13. Ref:17575054: Liu Y, Taverna SD, Muratore TL, Shabanowitz J, Hunt DF, Allis CD (2007) RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes & development 21(12):1530-45
  14. Ref:15598983: Mochizuki K, Gorovsky MA (2005) A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes & development 19(1):77-89
  15. Ref:14755052: Liu Y, Mochizuki K, Gorovsky MA (2004) Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proceedings of the National Academy of Sciences of the United States of America 101(6):1679-84
  16. Ref:15314029: Mochizuki K, Gorovsky MA (2004) Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Genes & development 18(17):2068-73
  17. Ref:15196465: Mochizuki K, Gorovsky MA (2004) Small RNAs in genome rearrangement in Tetrahymena. Current opinion in genetics & development 14(2):181-7
  18. Ref:12297043: Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA (2002) Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110(6):689-99
  19. Ref:6646127: Martindale DW, Bruns PJ (1983) Cloning of abundant mRNA species present during conjugation of Tetrahymena thermophila: identification of mRNA species present exclusively during meiosis. Molecular and cellular biology 3(10):1857-65

Sequences

>TTHERM_01161040(coding)
ATGTCTAACAAAGGCCTTGTCTAAAACAATCCTAGGTTGAGATTCTTGTGCAACTATTAC
TAGGTTATGCTCCACAACGAGAAGATCTACAGCTATTAATTTTCTGTGGAAGGGATGGAA
GCTGCAGAAGTGATGAAAAGAACTGGTGAAATCCTAAAAGCTTGCATCAACAAACTAAGA
GAAGTTTTTACTAATAAATTCTTGTTTTAGCACTCTGTCTTATACTCTCCTGTACAACTA
CAAGCTAACTAAATGACAGAAATAGGAACTGTTGATACTAAGACTGTGAGCCTCAAACTT
TTGGGAGAGGCAAATAACGAAAGAGAAGTTTAAAACATTTTTGGACGTCTTATCAAAACA
GTATTTGCTAAGATTAAGCTCAATAAACTAGGAAGAAAGTACTTCGATCCAGCTTCTCGT
AAAGAGTATAACGAATATGATTTAGCTGTTTTCAGTGGGTATGAGAGCTCATTAGAAAAA
TACTCATTTAATCAAAAACTTCTGAATATAGATAGTTGCTTTAAAGTCTAAAGAACCTCA
AATCTATTGCAAGCTCTTCAATAAGTAAAAGATAGAAATGACCTTTCAGGATTTGTAGGT
AATACTGTTATCACCTCTTACAATGGTAAATTTCACCGTATAGAATCTATTGAAAAAGAT
ATGTCTCCTAATGATGCATTTGAAGATAGAAAAGGAACTAAAAAAACATATATGCAATAC
TACAAAGAAGCCTATAATATTGGTAACATCGACCCAAACTAGCCTCTTGTGAAATGTGTT
GAGCTAAAAGGTAAGACTAAGACTCCTTTCACTTACTATTTGATTCCTTCACTATGCCAA
GTCACAGGATTGACTGATTAACAGAGAAATGATTTCAATTTAATGAAAAAGCTTGCTGAA
GTAACCAAACCAAAAGCCGGAGAAAGAATTGCTTAAGCAAGCAAATTTATTTAAAGAATA
AAATAAGATGCAGATAAAACATTGAAAGATTGGTCAGTTGAAATATGTGAAAAACCTTAA
ACTATTGACTACAAGCAACTTGATGCAGGTAATATGGAAATGCAACAAGGAAAAAAAAAG
ATAAATGTTGCTACAGGTAATTTAGATCGTGACACCTAAACTTAAATGTTTGAACAACCT
TCTCTCAATATGTGGGCTATTATTTACAGTGATCGTGACTAAAAAACATTTGACAGTCTT
CTAAGAACATTTTAAGAGTGCTTAAAATTCTACAATTATCCATGCAAACCTCCTAATTGC
ATCAGTGTCTAAAGCAGAGGAGCCTAAGATTGGATAAATGCTCTAAAGAATGCTCCTGAT
AATGTTTAAATGGCTGTTTTCTTACTCCCAGGAAAGAAAAAAGCAGGAATGTATTATGAT
GAAATCAAAAGATATTTCACAAATGTTAAACCTATTCCAACATAAGTTATTCTTGCAAGC
ACCGCAATGAAAGATAAAGGGCTGAGAAGTGTTGTAAATAAACTTTTGATGCAAATTTGT
GCAAAAACCGGTGGTGTTCCTTGGGTTATGGATAATTTACCCTTTTAGAACTTACCAACA
ATGGTGGTAGGAATGGATGTTTTCCACAATACTCCTGGAAAAAAAGAATCAATTTTCGGA
TTTGTTTCAACAGTAGATAGGAATTTCTCAAAATACTACTCTCACTCCCACGTGCTACCA
ACTGGTTAAGAAATCACTCCTTTCCTTTAGCAAGTTTATGAATAAGCTCTTAAGGAGTTT
AAGGATTCAAATGGAGTTTATCCTTAGCAGATCATCATTTTCAGAGACGGTGTTGGTGAA
GGCTAATTTAATGCTGTAAAAGACATTGAAATGCCTCAGTTAAAACAAGCTTGCCAAAAA
ATAAATGGTTGTGAAAATATTAAATTCACTCTCATTATAGTCAACAAGAAAGTTGGAGCT
AAGTTTTACTAAAGCCAAGATGGGAATGTGGGTTCAGCTGAAAACCCACCACAAGGAGCT
CTAATTGAAGATAGAGTTACGAAGGGAGTTAATGACTTCTTTATTGTCAGCTAAAAGACA
AATCAAGGTACTGCTTCTCCTACTCACTACACTATTATCTATAACGATATGATTGATGAG
GCTTTGCAAAAAGATAACTCTCCTTAATACAGAGAATTTAAGAGAGACCTTTAAGTTCTA
GCTTTCAAGCTTTGCTTCTTGTACTATAACTGGACTGGAGCCATTAAAACTCCATCTGCA
GTTAGGTATGCTCACACCCTTTCCAACTTTGTAGGAGACAGATACAATCCTAGAAAGAAC
GATGACACTTTGATCCAAGCTCACCCTAAATATGATAAATTTAGATCTCTCTACTTCATT
TGA


>TTHERM_01161040(protein)
MSNKGLVQNNPRLRFLCNYYQVMLHNEKIYSYQFSVEGMEAAEVMKRTGEILKACINKLR
EVFTNKFLFQHSVLYSPVQLQANQMTEIGTVDTKTVSLKLLGEANNEREVQNIFGRLIKT
VFAKIKLNKLGRKYFDPASRKEYNEYDLAVFSGYESSLEKYSFNQKLLNIDSCFKVQRTS
NLLQALQQVKDRNDLSGFVGNTVITSYNGKFHRIESIEKDMSPNDAFEDRKGTKKTYMQY
YKEAYNIGNIDPNQPLVKCVELKGKTKTPFTYYLIPSLCQVTGLTDQQRNDFNLMKKLAE
VTKPKAGERIAQASKFIQRIKQDADKTLKDWSVEICEKPQTIDYKQLDAGNMEMQQGKKK
INVATGNLDRDTQTQMFEQPSLNMWAIIYSDRDQKTFDSLLRTFQECLKFYNYPCKPPNC
ISVQSRGAQDWINALKNAPDNVQMAVFLLPGKKKAGMYYDEIKRYFTNVKPIPTQVILAS
TAMKDKGLRSVVNKLLMQICAKTGGVPWVMDNLPFQNLPTMVVGMDVFHNTPGKKESIFG
FVSTVDRNFSKYYSHSHVLPTGQEITPFLQQVYEQALKEFKDSNGVYPQQIIIFRDGVGE
GQFNAVKDIEMPQLKQACQKINGCENIKFTLIIVNKKVGAKFYQSQDGNVGSAENPPQGA
LIEDRVTKGVNDFFIVSQKTNQGTASPTHYTIIYNDMIDEALQKDNSPQYREFKRDLQVL
AFKLCFLYYNWTGAIKTPSAVRYAHTLSNFVGDRYNPRKNDDTLIQAHPKYDKFRSLYFI


>TTHERM_01161040(gene)
ATGTCTAACAAAGGCCTTGTCTAAAACAATCCTAGGTTGAGATTCTTGTGCAACTATTAC
TAGGTTATGCTCCACAACGAGAAGATCTACAGCTATTAATTTTCTGTGGAAGGGATGGAA
GCTGCAGAAGTGATGAAAAGAACTGGTGAAATCCTAAAAGCTTGCATCAACAAACTAAGA
GAAGTTTTTACTAATAAATTCTTGTTTTAGCACTCTGTCTTATACTCTCCTGTACAACTA
CAAGCTAACTAAATGACAGAAATAGGAACTGTTGATACTAAGACTGTGAGCCTCAAACTT
TTGGGAGAGGCAAATAACGAAAGAGAAGTTTAAAACATTTTTGGACGTCTTATCAAAACA
GTATTTGCTAAGATTAAGCTCAATAAACTAGGAAGAAAGTACTTCGATCCAGCTTCTCGT
AAAGAGTATAACGAATATGATTTAGCTGTTTTCAGTGGGTATGAGAGCTCATTAGAAAAA
TACTCATTTAATCAAAAACTTCTGAATATAGATAGTTGCTTTAAAGTCTAAAGAACCTCA
AATCTATTGCAAGCTCTTCAATAAGTAAAAGATAGAAATGACCTTTCAGGATTTGTAGGT
AATACTGTTATCACCTCTTACAATGGTAAATTTCACCGTATAGAATCTATTGAAAAAGAT
ATGTCTCCTAATGATGCATTTGAAGATAGAAAAGGAACTAAAAAAACATATATGCAATAC
TACAAAGAAGCCTATAATATTGGTAACATCGACCCAAACTAGCCTCTTGTGAAATGTGTT
GAGCTAAAAGGTAAGACTAAGACTCCTTTCACTTACTATTTGATTCCTTCACTATGCCAA
GTCACAGGTAAAAAAATAATTATAATTTTTATGAAAGTAGAACTTAATTTATTCAAATAA
ATTTATTCACTTATAAATAAGGATTGACTGATTAACAGAGAAATGATTTCAATTTAATGA
AAAAGCTTGCTGAAGTAACCAAACCAAAAGCCGGAGAAAGAATTGCTTAAGCAAGCAAAT
TTATTTAAAGAATAAAATAAGATGCAGATAAAACATTGAAAGATTGGTCAGTTGAAATAT
GTGAAAAACCTTAAACTATTGACTACAAGCAACTTGATGCAGGTAATATGGAAATGCAAC
AAGGAAAAAAAAAGATAAATGTTGCTACAGGTAATTTAGATCGTGACACCTAAACTTAAA
TGTTTGAACAACCTTCTCTCAATATGTGGGCTATTATTTACAGTGATCGTGACTAAAAAA
CATTTGACAGTCTTCTAAGAACATTTTAAGAGTGCTTAAAATTCTACAATTATCCATGCA
AACCTCCTAATTGCATCAGTGTCTAAAGCAGAGGAGCCTAAGATTGGATAAATGCTCTAA
AGAATGCTCCTGATAATGTTTAAATGGCTGTTTTCTTACTCCCAGGAAAGAAAAAAGCAG
GAATGTATTATGATGAAATCAAAAGATATTTCACAAATGTTAAACCTATTCCAACATAAG
TTATTCTTGCAAGCACCGCAATGAAAGATAAAGGGGTAAATATTGATTTAATATATAATG
CTTAAACGTATTTTTTTATTTATATTAATTTTATTTTTTATTAAATTTTAAGCTGAGAAG
TGTTGTAAATAAACTTTTGATGCAAATTTGTGCAAAAACCGGTGGTGTTCCTTGGGTTAT
GGATAATTTACCCTTTTAGAACTTACCAACAATGGTGGTAGGAATGGATGTTTTCCACAA
TACTCCTGGAAAAAAAGAATCAATTTTCGGATTTGTTTCAACAGTAGATAGGAATTTCTC
AAAATACTACTCTCACTCCCACGTGCTACCAACTGGTTAAGAAATCACTCCTTTCCTTTA
GCAAGTTTATGAATAAGCTCTTAAGGAGTTTAAGGATTCAAATGGAGTTTATCCTTAGCA
GGTTTTAAATTTAATAATGAATTATTTAAATTTATCTGTATTTTATATTATTACAGATCA
TCATTTTCAGAGACGGTGTTGGTGAAGGCTAATTTAATGCTGTAAAAGACATTGAAATGC
CTCAGTTAAAACAAGCTTGCCAAAAAATAAATGGTTGTGAAAATATTAAATTCACTCTCA
TTATAGTCAACAAGGTATTTTAATTAATGAAGATAAAATATATTTTATTTATTAAAGTAA
TCATATAATTAATAATTAGAAAGTTGGAGCTAAGTTTTACTAAAGCCAAGATGGGAATGT
GGGTTCAGCTGAAAACCCACCACAAGGAGCTCTAATTGAAGATAGAGTTACGAAGGGAGT
TAATGACTTCTTTATTGTCAGCTAAAAGACAAATCAAGGTACTTAAATTCATATTTTAAA
TATTAAGAAAACCTGATAAAATTTGTTATATATTGAAATAAAGGTACTGCTTCTCCTACT
CACTACACTATTATCTATAACGATATGATTGATGAGGCTTTGCAAAAAGATAACTCTCCT
TAATACAGAGAATTTAAGAGAGACCTTTAAGTTCTAGCTTTCAAGCTTTGCTTCTTGTAC
TATAACTGGACTGGAGCCATTAAAACTCCATCTGCAGTTAGGTATGCTCACACCCTTTCC
AACTTTGTAGGAGACAGATACAATCCTAGAAAGAACGATGACACTTTGATCCAAGCTCAC
CCTAAATATGATAAATTTAGATCTCTCTACTTCATTTGA